Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation.

نویسندگان

  • Anne J Blood
  • Nader Pouratian
  • Arthur W Toga
چکیده

Characterization of neurovascular relationships is critical to accurate interpretation of functional neuroimaging data. We have previously observed spatial uncoupling of optical intrinsic signal imaging (OIS) and evoked potential (EP) responses in rodent barrel cortex following simultaneous whisker and forelimb stimulation, leading to changes in OIS response magnitude. To further test the hypothesis that this uncoupling may have resulted from "passive" overspill of perfusion-related responses between functional regions, we conducted the present study using temporally staggered rather than simultaneous whisker and forelimb stimulation. This paradigm minimized overlap of neural responses in barrel cortex and forelimb primary somatosensory cortex (SI), while maintaining overlap of vascular response time courses between regions. When contrasted with responses to 1.5-s lone-whisker stimulation, staggered whisker and forelimb stimulation resulted in broadening of barrel cortex OIS response time course in the temporal direction of forelimb stimulation. OIS response peaks were also temporally shifted toward the forelimb stimulation period; time-to-peak was shorter (relative to whisker stimulus onset) when forelimb stimulation preceded whisker stimulation and longer when forelimb stimulation followed whisker stimulation. In contrast with OIS and EP magnitude decreases previously observed during simultaneous whisker/forelimb stimulation, barrel cortex OIS response magnitude increased during staggered stimulation and no detectable changes in underlying EP activity were observed. Spatial extent of barrel cortex OIS responses also increased during staggered stimulation. These findings provide further evidence for spatial uncoupling of OIS and EP responses, and emphasize the importance of temporal stimulus properties on the effects of this uncoupling. It is hypothesized that spatial uncoupling is a result of passive overspill of perfusion-related responses into regions distinct from those which are functionally active. It will be important to consider potential influences of this uncoupling when designing and interpreting functional imaging studies that use hemodynamic responses to infer underlying neural activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats

Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

Optical imaging and electrophysiology of rat barrel cortex. II. Responses to paired-vibrissa deflections.

A study was undertaken to investigate the response of the rodent somatosensory barrel cortex to paired-whisker stimuli. Cortical responses to controlled whisker deflections were recorded by (i) conventional multi-unit extracellular recording within the cytochrome oxidase rich barrels centers, and (ii) intrinsic signal optical imaging, a technique that measures an optical correlate of neuronal a...

متن کامل

اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورون‌های لایه IV و V‌‌‌ قشر بارل (بشکه‌ای) در موش صحرایی

Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...

متن کامل

Developmental changes in trial-to-trial variations in whisker barrel responses studied using intrinsic optical imaging: comparison between normal and de-whiskered rats.

We used an intrinsic optical imaging technique to examine postnatal developmental changes in the rat barrel response to a single whisker movement. We compared the optical response patterns between control and de-whiskered rats, from which whiskers were removed except for the D1 whisker just after birth. Barrel responses were evoked by D1-whisker movement stimulation, and the intrinsic optical s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2002